ЫЫЫ

  Вход на форум   логин       пароль   Забыли пароль? Регистрация
On-line:  

Раздел: 
Детский форум / Беседка / ЫЫЫ

Страницы: 1  ответить новая тема

Автор Сообщение


Группа: Участники
Сообщений: 2
Добавлено: 08-01-2009 15:39
neonco, эти 3 вопроса не очень трудные....что такое анизотропная фильтрация и почему это один из важнейших факторов для использования фотошопа?
это вопрос не по теме....не все любят фотошоп =)
Большой адронный коллайдер
Большой адронный (или адроновый) коллайдер - ускоритель, представляющий собой подобие гигантской трубы, в которой разгоняют частицы атомов. Она оснащена магнитами, которые, включаясь и выключаясь с неподдающейся воображению быстротой, заставляют частицы двигаться по кругу, пока те не наберут совершенно немыслимую скорость. У полностью разогнанных частиц она достигает 180 000 миль в секунду. (А это почти скорость света)
Например, разгонав по трубе две частицы в противоположных направлениях и столкнув затем друг с другом, удастся разбить их на составные элементы. Иными словами "увидеть" основные, фундаментальные ингридиенты вселенной.

Большой адро?нный колла??йдер (англ. LHC, Large Hadron Collider), строящийся в настоящее время в Европейском центре ядерных исследований CERN (Centre Europeen de Recherche Nucleaire) усилиями физиков всего мира, является ускорителем, предназначенным для ускорения протонов и тяжёлых ионов. Целью проекта LHC прежде всего является открытие бозона Хиггса — последней экспериментально не найденной частицы Стандартной Модели (СМ) — и поиск физики вне рамок СМ. Также большое внимание планируется уделить исследованиям свойств W и Z-бозонов, ядерным взаимодействиям при сверхвысоких энергиях, процессам рождения и распадов тяжёлых кварков (b и t).

Идея проекта LHC родилась в 1984 году и была официально одобрена десятью годами позже. Строительство LHC началось в 2001 году после окончания работы предыдущего большого ускорителя CERN — электрон-позитронного коллайдера LEP (Large Electron-Positron Collider).

На коллайдере LHC предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (то есть 5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов.

Большой адронный коллайдер строится в существующем туннеле, который прежде занимал LEP. Туннель с периметром 26,7 км проложен на глубине около ста метров на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре ?271 °C. Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Первые тестовые столкновения с энергией 900 ГэВ (так называемый Commission Run) должны быть проведены летом 2008 года. Отметим, что энергия сталкивающихся пучков во время Commission Run будет в два раза ниже, чем энергия в системе центра масс на коллайдере Tevatron. В конце 2008 года планируется выход на энергию 7 ТэВ, а потом — достижение проектной энергии в 14 ТэВ.

После запуска LHC будет самым высокоэнергичным ускорителем элементарных частиц в мире, почти на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Tevatron, который в настоящее время работает в Национальной ускорительной лаборатории им. Э. Ферми (США) и Релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость LHC во время Commission Run составит всего 1029 частиц/см?·с. Это весьма скромная величина. Однако, после запуска LHC для экспериментальных исследований светимость будет постепенно повышаться от начальной 5·1032 частиц/см?·с до номинальной 1,7·1034 частиц/см?·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

Планируется, что на LHC будут работать четыре детектора: ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (The Large Hadron Collider beauty experiment) и ALICE (A Large Ion Collider Experiment). Установки ATLAS и CMS предназначены для поиска бозона Хиггса и «нестандартной физики». Детектор LHCb оптимизирован под исследования физики b-кварков, а детектор ALICE для поиска кварк-глюонной плазмы или кварк-глюонной жидкости в столкновениях ионов свинца.

Россия принимает активное участие как в строительстве LHC, так и в создании всех четырёх детекторов, которые должны работать на коллайдере.

Для управления, хранения и обработки данных, которые будут поступать с ускорителя LHC и детекторов, создаётся распределённая вычислительная сеть LCG (LHC Computing GRID), использующая технологию ГРИД. Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@Home.


Опасения неконтролируемых физических процессов в коллайдере

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев связанных с работой LHC изложена на сайте[1].

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических черных дыр [2], а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными [3].

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля, Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая Релятивистский ионный коллайдер в Брукхейвене. Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что такие объекты не могут возникать при энергиях коллайдера LHC в нашем четырёхмерном пространстве, так как для этого потребуется энергия большая на 16 порядков по сравнению с энергией пучков LHC. Гипотетические микроскопические чёрные дыры могут появляться в экспериментах на LHC в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если черные дыры будут возникать при столкновении частиц на LHC они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.










1. ^ The Potential for Danger in Particle Collider Experiments
2. ^ Dimopoulos, S. and Landsberg, G. Black Holes at the Large Hadron Collider. Phys. Rev. Lett. 87 (2001).
3. ^ Blaizot, J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC. (PDF)

Большой адроновый коллайдер - Big Bada Bum! ))
http://www.justsay.ru/bolshojj-adronovyjj-kollajjder---big-bada-bum--11410

Критическая масса
Критическая масса – минимальная масса делящегося вещества, при которой в нём может происходить самоподдерживающаяся ядерная реакция деления. Если масса вещества ниже критической, то слишком много нейтронов, необходимых для реакции деления, теряется, и цепная реакция не идёт. При массе больше критической цепная реакция может лавинообразно ускоряться, что приводит к ядерному взрыву.
Критическая масса зависит от размеров и формы делящегося образца, так как они определяют утечку нейтронов из образца через его поверхность. Минимальную критическую массу имеет образец сферической формы, так как площадь его поверхности наименьшая. Критическая масса чистого металлического плутония-239 сферической формы 11 кг (диаметр такой сферы 10 см), урана-235 – 50 кг (диаметр сферы 17 см). Критическая масса также зависит от химического состава образца. Отражатели и замедлители нейтронов, окружающие делящееся вещество, могут существенно снизить критическую массу.

Критическая масса №2
Критическая масса — встреча в одном месте значительного количества велосипедистов, с последующим организованным движением группы по городу.
Критическая масса в Сан-Франциско, 2005 годПервый совместный заезд был проведён в 1992 году в Сан-Франциско. С того времени движение стало популярным в более чем 300 городах мира.
А вот картинка...
http://upload.wikimedia.org/wikipedia/commons/9/97/Critical_Mass%2C_San_Francisco%2C_April_29%2C_2005.jpg
Первая космическая скорость
Первая космическая скорость — скорость, которую необходимо придать баллистическому снаряду, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы оставаться на круговой орбите с радиусом равным радиусу планеты. Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся тангенциально по отношению к поверхности Земли, не упадёт на неё, а будет двигаться по круговой орбите.

Для вычисления первой космической скорости необходимо рассмотреть равенство центробежной силы и силы тяготения действующих на снаряд на круговой орбите.


где m — масса снаряда, M — масса планеты, G — гравитационная постоянная (6,67259·10?11 м?·кг?1·с?2), — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли, M = 5,97·1024 кг, R = 6 378 000 м), найдем

7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R?, то

Вторая Третья Четвёртая космические скорости...

*****************

частный гость
Группа: Участники
Сообщений: 31
Добавлено: 27-08-2009 13:00
ЫЫЫ

Страницы: 1  ответить новая тема
Раздел: 
Детский форум / Беседка / ЫЫЫ

KXK.RU